
A

f
t
t
b
©

K

1

E
w
l
h
p
e
w
e
d
f
o
n
H
g
i
o
t
s
i

1
d

Chemical Engineering Journal 133 (2007) 133–137

Optimization of the pyrolysis of ethane
using fuzzy programming

C. Riverol a,∗, M.V. Pilipovik b

a Chemical Engineering Department, University of West Indies, St. Augustine, Trinidad, Trinidad and Tobago
b Project Department, JC Engineering, Los Palos Grandes Caracas, Venezuela

Received 23 June 2006; received in revised form 29 January 2007; accepted 19 February 2007

bstract

The aim of this paper is to apply fuzzy/possibilistic optimization focus in the context of the pyrolysis of ethane. The methodology is based on the
act that minimal/maximal values of these parameters are target values along the year rather than fixed real numbers. The fuzzy model is obtained

aking into account the behaviour of the ethane conversion, steam/hydrocarbon ratio, inlet pressure and inlet temperature. The results demonstrated
hat the degree of optimism, α = 1, describes better the real behaviour of the process with an equilibrium approach dimensionless parameter (EA)
elow 0.65 and a minimum total cost of US$ 2.55.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The ethylene process was used commercially before 1920.
thylene has become one of largest volume chemicals in the
orld [1]. So far, several optimization techniques have been pub-

ished, however, few optimization studies of the ethylene process
ave been made. The first study was made for [2] where the
yrolysis furnace was studied using a simulator using mass and
nergy balance equations for simplified systems, i.e., systems
ith simplified kinetics, only two or three species of importance,

tc. Unfortunately, the assumptions used in these earlier works
o not adequately apply to many specific reaction systems. In
act, several process optimization studies [3,4] have shown that
ptimal values of several of the independent variables lie on or
ear the upper or lower boundaries of the independent variables.
owever, in the ethylene process is particularly difficult when a
radual addition of the constraint and unconstrained variables is
ncluded in the pyrolysis furnace. In this case, the design data,
bjective function and constraints are stated in vague and linguis-

ic terms. It appears that it is more reasonable to have a transition
tate from absolute permission to absolute non-permission. This
mplies that the constraint is to be stated involving vague and
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mprecise information. In the literature several applications of
he fuzzy logic in optimization have been reported [5–9].

The fuzzy mathematical programming in the first category
as initially developed by Bellman and Zadeh [5]. It treats
ecision-making problem under fuzzy goals and constraints.
he fuzzy goals and constraints represent the flexibility of the

arget values of objective functions and the elasticity of con-
traints. From this point of view, this type of fuzzy mathematical
rogramming is called the flexible programming. The second
ategory in fuzzy mathematical programming treats ambigu-
us coefficients of objective functions and constraints but does
ot treat fuzzy goals and constraints. Dubois and Prade [10]
reated systems of linear equations with ambiguous coefficients
uggesting the possible application to fuzzy mathematical pro-
ramming for the first time. A remarkable development is done
y Kuzmin [11]. He introduced four inequality indices between
uzzy numbers based on the possibility theory into mathematical
rogramming problems with fuzzy coefficients. Since the fuzzy
oefficients can be regarded as possibility distributions on coef-
cient values, this type of fuzzy mathematical programming is
sually called the possibilistic programming.

In fact, using possibilistic optimization approach, a solution

an be achieved that provides a maximum degree of overall sat-
sfaction [12–14]. To determine an optimal solution, decision
roblems may be formulated as a fuzzy decision model, particu-
arly when the available data are known exactly though varying
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ithin a tolerance limit. The coefficients of some constraints
ay be fuzzy numbers and the original fuzzy problem is trans-

erred into a crisp satisfactory model [15]. The purpose of this
tudy was to develop a fuzzy model with economics of the pyrol-
sis furnace in an ethylene process using ethane feed. The plant
ize is 300,000 TPY of ethylene. A further objective is to study
he sensibility of the model when the degree of optimist changes.

. Ethane pyrolysis

The ethane is pyrolyzed during the ethylene production using
furnace [1]. The feed enters the furnace convection and it is pre-
eated to 833–972 K by the flue gases before being further heated
n the radiation section. Dilution steam, added to inhibit coke
ormation, is also preheated in the convection section before
eing mixed with the feed. The ethane–steam mixture is divided
mong parallel coils in the firebox. The mixture enters the radi-
tion section at 414–552 kPa where the ethane is pyrolyzed to
he primary products of hydrogen, methane and ethylene, along
ith a mixture of smaller amounts of C3 to C5 hydrocarbons.
he effluent leaves the furnace at 350–450 kPa and 833–972 K.
he furnace effluent is cooled in a transfer line exchanger where

he steam is recovery. Seven equations to describe the pyrolysis
f ethane:

2H6 ⇔ C2H4 + H2 (1)

2H4 + 2H2 ⇔ 2CH4 (2)

2H4 ⇔ 0.25C4H6 + 0.125C4H8 + 0.125C4H10 + 0.125H2

(3)

2H4 ⇔ 2C + 2H2 (4)

2H4 ⇔ C2H2 + H2 (5)

2H4 + C2H6 ⇔ 0.952C3H6 + 0.381C3H8 + 0.62H2 (6)

2H4 ⇔ 0.333C6H6 + H2 (7)

. Analysis of data and model

The methodology for fuzzy programming (FP) has refer-
nces at [5–8,14,16]. The approach proposed here is based on
n interaction with the decision maker, the implementer and the
nalyst in order to find a compromised satisfactory solution for
fuzzy programming (FP) problem. In a decision process using
P model, source resource variables may be fuzzy, instead of
recisely given numbers as in crisp linear programming (CLP)
odel [17,18]. For example, machine hours, labor force, mate-

ial needed and so on in a manufacturing center, are always
mprecise, because of incomplete information and uncertainty
n various potential suppliers and environments. Therefore, they
hould be considered as fuzzy resources, and the FP problem
hould be solved by using fuzzy set theory [17–19]. A general

odel of fuzzy linear programming is formulated as:

Min(z = Cx)

subject to Āx≤̄b̄, x ≥ 0
(8)

f
b

P
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here x is the vector of decision variables and C are the coeffi-
ients of the objective function (real number); Ā and b̄ are fuzzy
uantities; the operations of addition and multiplication by a
eal number of fuzzy quantities are defined by Zadeh’s exten-
ion principle [5]; the inequality relation ≤̄ is given by a certain
uzzy relation and the objective function, z, is to be maximized
n the sense of a given FP problem. Carlsson and Korhonen
15] approach is considered to solve FP problem, which is fully
rade-off, meaning that the solution will be with certain degree
f satisfaction. First of all, formulate the membership functions
or the fuzzy parameters of Ā and b̄.

Very simply, fuzzy decision making selects from a set of crisp
lements while possibility selects from a set of distributions. The
nderlying sets associated with fuzzy decision-making are fuzzy
here one forms the decision space of crisp elements from oper-

tions (“and” in the case of optimization, that is, constraints) on
hese fuzzy sets. The underlying sets associated with possibilis-
ic decision-making are crisp where one forms the decision space
f distributions from operations on crisp sets. Possibilistic dis-
ributions encapsulate the best estimate about the value of an
ntity given the available information.

Fuzzy membership function values describe the degree to
hich an entity is that value [21]. A possibility of one means that

he value of the entity has the highest possibility of being what
istribution defines. If the fuzzy membership value is one, then it
s definitely the value. Thus the nature of decision making in the
resence of fuzzy/possibilistic uncertainties are quite different in
emantics and optimization procedures since fuzzy optimization
ptimizes over sets of numbers and possibility optimizes over
ets of distributions.

The problem (8) included linear functions of x whose coef-
cients are possibilistic variables. Such a function is called
a possibilistic linear function’. Since the possibilistic variable
oefficients are ambiguous parameters, the possibilistic linear
unction value is also ambiguous. The range of the possibilistic
unction value are restricted by a fuzzy number since the pos-
ibilistic variable coefficients are restricted by fuzzy numbers.
nder a possibility distribution μA of a possibilistic variable α,
ossibility and necessity measures of the event that α is in fuzzy
et B are defined as follows [22,23]:

ΠA(B) = sup min(μA(r), μB(r)),

NA(B) = inf max(1 − μA(r), μB(r)) (9)

here μB is the membership function of the fuzzy set B.
∏

A(B)
valuates to what extent it is possible that the possibilistic vari-
ble α restricted by the possibility distribution μA is in the fuzzy
et B. On the other hand, NA(B) evaluates to what extent it is cer-
ain that the possibilistic variable α restricted by the possibility
istribution μA is in the fuzzy set B.

Let α be a possibilistic variable. In context to the above exam-
le, let B = (−∞, g], i.e., B be a crisp (non-fuzzy) set of real
umbers, which is not greater than g [24,25]. Then we obtain the

ollowing indices by possibility and necessity measures defined
y:

os(α ≤ g) = ΠA((−∞, g]) = sup{μA(r)|r ≤ g} (10)
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Fig. 1. Possibility and necessity measures of α ≤ g.

es(α ≤ g) = NA((−∞, g]) = 1 − sup{μA(r)|r > g} (11)

os(α ≤ g) and Nes(α ≤ g) show the possibility and certainty
egrees to what extent α is not greater than g. Those indices are
epicted in Fig. 1.

Similarly, letting B = [g, +∞) we obtain the following two
ndices:

os(α ≥ g) = ΠA([g, +∞)) = sup{μA(r)|r ≥ g} (12)

es(α ≥ g) = NA([g, +∞)) = 1 − sup{μA(r)|r < g} (13)

os(α ≥ g) and Nes(α ≥ g) show the possibility and certainty
egrees to what extent α is not smaller than g. Those indices are

epicted in Fig. 2.

Following the study case, Schutt [19] has given data for efflu-
nt gas composition as a function of the optimal concentration

Fig. 2. Possibility and necessity measures of α ≥ g.

∇

w
m
p
o
u

D

F
s
a
t
f

M

w
[

c

eering Journal 133 (2007) 133–137 135

f ethane, Ce:

H2 = 1.0044Ce − 4.036 (14)

C2H4 = 0.8022Ce + 3.950 (15)

C3H8 = 0.0083Ce − 0.205 (16)

CH4 = 0.1786Ce − 2.500 (17)

C4 = 0.0180Ce − 0.235 (18)

C3H6 = 0.0202Ce − 0.508 (19)

C5 = 0.0203Ce − 0.662 (20)

he conditions of the furnace must be checked to assure that coke
eposition in the reactor coils will not be excessive. The criterion
sed is based on an equilibrium approach (EA) dimensionless
arameter. Through experience in reactor design, it has been
oncluded that coke formation is not excessive if the approach
o equilibrium of the primary decomposition of ethane is kept
elow 0.65. The EA constraint is defined as:

A = NC2H4NH2P

NC2H6NK1
(21)

1 = 4.87 × 10−6 e0.0078T (22)

here P is the total pressure and N is the total moles. Since the
oke formation mechanism is quite complex and not fully under-
tood, a simple, but effective relationship has been developed to
epresent conditions, which give excessive coke formation. The
eat flux, q, is the sum of energy fluxes. The energy balance
ssociated to the furnace within the reaction zone varied by as
uch as 12 K. The equation is as follows:

q = ∇
(
−k∇T +

∑
hi (−ρD∇xi)

)
(23)

here k is the conductivity, T the furnace temperature, x the
olar fraction by component and ρ is the mixture density. A sim-

lified expression suggested by Maji et al. [20] for the calculation
f mixture diffusivity (D) in the combustion of hydrocarbons was
sed. The expression is as follows:

(m2/s) = AT 1.75

P
(24)

or developing the model, the necessity and possibilistic mea-
ures indicated Eq. (9) where considered, however, the costs
re non-linear function of the decision variables considered in
his article [26]. The model consists in a non-linear objective
unction and linear constraints. The final model is as follows:

in

[∑
n

Cixi

]
(25)

here C are the costs. The major costs used in this model are

26]:

ost of reactor : CR = CRB

[
x2 ln(1 − x1)

(x4/450 kPa)K1

]
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Table 1
ai fuzzy intervals

Ethane conversion (x1) Steam/hydrocarbon ratio (x2) Inlet temperature (x3) Inlet pressure (x4)

Minimum 0.55 0.45 833 414
Average 0.59 0.52
Maximum 0.62 0.67

Table 2
bi values

Variable Value

Ethane conversion, x1 1.00
Steam/hydrocarbon ratio, x 0.8
I
I

c
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α = 1.0 is realistic because EA is below 0.65, the composition
of the effluent gas is more according to our filed data and the
heat flow was below 14,200 kJ/m2 K. On the other hand, Table 5
depicts the total cost of the plant (objective function) is very sen-

Table 3
Composition of the effluent gas at different degrees of optimism and operating
conditions

Component α

0.00 0.25 0.50 0.75 1.00

H2 35.0 34.8 35.1 34.6 35.0
CH4 5.1 5.1 4.9 4.8 5.2
C2H2 0.2 0.15 0.15 0.16 0.15
C2H4 33.1 32.8 33.1 32.5 33
C2H6 23.8 23.8 24.0 23.7 23.6
C3H6 1.0 0.9 0.9 0.9 0.9
C3H8 0.19 0.19 0.18 0.19 0.19
C4 0.45 0.45 0.49 0.45 0.45
C5 1.16 1.18 1.18 2.7 0.21

Table 4
EA at different degrees of optimism

α

0.00 0.25 0.50 0.75 1.00

EA 0.61 0.58 0.58 0.60 0.60
Heat flux (kJ/m2 K) 13,810 13,821 13,800 13,801 13,804

Table 5
Operating costs (US$) at different degrees of optimism

α Cost (US$)

0.00 2.61
2

nlet temperature, x3 (K) 980
nlet pressure, x4 (kPa) 455

ost of furnace : CF = CFB

(
q

FCp(x3 − 900 K)

)0.78

ost of steam : CS = CSBx2
0.22

here x1 is the ethane conversion (Ce = Ce0 (1 − x1)), x2 the
team hydrocarbon ratio, x3 the inlet temperature and x4 is the
nlet pressure. CRB, CFB and CSB are basis costs that can be
alculated using Guthrie correlations [26].

Subject to:

Nec

[(∑
n

āixi ≤ bi

)
≥ α

]
↔
∑

(ai)xj

+
∑

α(āi − ai)xi ≤ bi (26)

Pos

[(∑
n

āijxi ≤ bi

)
≥ α

]
↔
∑

(ai)xi

+
∑

(1 − α)(āi − ai)xi ≤ bi (27)

here α is the level or degree of optimism for the satisfaction
f the constraint. Here ai and bi are triangular fuzzy numbers:
/ai/āi and 0/bi/b̄i crisps and α ∈ [0 1] with α = 0.0, 0.25, 0.50,
.75 and 1.00 is used (these values were selected arbitrarily)
25]. Any values between [0 1] can be used. The values of a and
can be found in Tables 1 and 2.

. Results and discussion

Briefly speaking, the possible optimal solution is a solution,
hich is optimal for at least one possible objective coefficient.
n the other hand, the necessarily optimal solution is a solution,
hich is optimal for all objective coefficients. A necessarily
ptimal solution does not always exist. When no necessarily

ptimal solution exists, plenty possibly optimal solutions should
xist. The idea is that Eqs. (25) and (27) incorporate a possibilis-
ic right-hand side with a possibilistic outcome left side where
he constraints are a set of distribution so that one must take

0
0
0
1

910 490
972 522

nto account all the possible distribution. Eqs. (25)–(27) can be
olved using any non-linear programming algorithm or software
ackage as GAMS.

Since the furnace has to be thermally efficient to be eco-
omical, the optimum combination of variables will tend to
alance in the total cost. In Tables 3 and 4, are shown the val-
es of the decision variables to different degree of optimism.
he optimum values were obtained when the degree of opti-
ism is equal to 1.0, where: the conversion is equal to 0.61, the

team/hydrocarbon ratio is equal to 0.61, the inlet temperature is
65 K and the inlet pressure is 445 kPa. The combination when
.25 2.61

.50 2.62

.75 2.61

.00 2.55
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ible to α. When the value of α is over 0.50 the cost is practically
onstant.

It is worth noting that the result can change if another fuzzy
unction is used (S-shape or Gaussian). We used triangular fuzzy
unction because this function adjusted satisfactory to our data.

oreover, the objective function is independent of the average
sed because the possibility and necessity measures are satisfied
f the same manner.

. Conclusion

Real world problems are not usually so easily formulated as
athematical models or fuzzy models. Sometimes qualitative

onstraints and/or objectives are almost impossible to represent
n mathematical forms. The fuzzy solutions have not yet been
nvestigated considerably. In this paper, we formulated a fuzzy
roblem for studying the pyrolysis of ethane. The most important
esults indicated that using fuzzy programming with a degree of
ptimistic equal to 1.0, a good result can be obtained and the
urnace is economically attractive.
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